Curve Harmony Offset

1.	Introduzione e scelta del metodo di lavorazione	pag. 2
	1.6 Definizione calibrazione mirata senza linearizzazione lastra1.7 Definizione calibrazione mirata con linearizzazione lastra1.8 Definizione calibrazione generica	pag. 3 pag. 3 pag. 3
2.	Linearizzazione lastra	
	2.1 Perché effettuare la linearizzazione lastra?2.3 Definiamo come lavora la combinazione lastra-CTP-sviluppo2.10 Definiamo i valori che vogliamo ottenere in lastra2.13 Creazione della curva di linearizzazione lastra	pag. 4 pag. 4 pag. 7 pag. 8
3.	Calibrazione mirata (con o senza linearizzazione)	
	3.2 Definiamo l'attuale schiacciamento in una condizione di stampa3.3 Parametri da utilizzare durante la tiratura di prova3.10 Definiamo i valori che vogliamo ottenere sul foglio stampato3.12 Creiamo la curva di calibrazione TVI	pag. 10 pag. 11 pag. 16 pag. 18
4.	Calibrazione generica	pag. 19
5.	Uso della curva	pag. 20
6.	Q&A	
	 6.1 Perché serve creare le curve di compensazione tonale? 6.2 Quanto schiaccia la mia macchina da stampa? 6.3 Lo schiacciamento di messa in macchina varia []? 6.4 Su che tipo di carta sto stampando? 	pag. 21 pag. 22 pag. 22 pag. 23

6.5 Quale condizione di stampa corrisponde a quale curva? pag. 24

-.-

1. Introduzione e scelta del metodo di lavorazione

- 1.1 Scopo di questo manuale è fornire una procedura per la creazione e la gestione delle curve di compensazione tonale orientate all'uso su macchine Offset.
- 1.2 Questo manuale fa riferimento ad Harmony v1.2 .
- 1.3 Questo manuale presuppone che abbiate una buona conoscenza del flusso di lavoro in vostro possesso.
- 1.4 <u>Prima</u> di procedere alla creazione delle curve, decidete il metodo di lavorazione preferito scegliendo fra i seguenti:
 - Calibrazione mirata **senza** linearizzazione lastra
 - Calibrazione mirata **con** linearizzazione lastra
 - Calibrazione generica

La calibrazione mirata **senza** linearizzazione lastra è indicata per i clienti che usano lastre offset senza sviluppo.

La calibrazione mirata **con** linearizzazione lastra è indicata per i clienti che usano lastre offset con sviluppo.

1.5 La lettura del capitolo 6 vi aiuterà a comprendere meglio le motivazioni per cui è necessario creare una corretta curva di compensazione in relazione ad ogni condizione di stampa.

Definizione della Calibrazione mirata senza linearizzazione lastra

- 1.6 L'obbiettivo di questo tipo di calibrazione è ottenere una singola curva di calibrazione per ogni condizione di stampa. Questa curva servirà per compensare le variazioni di tutti i parametri relativi alla messa in macchina, ossia:
 - tipo di lastra utilizzata
 - variazioni dovute al laser (CTP)
 - variazioni dovute al chimico (questa variabile non è presente per lastre senza sviluppo)
 - lineatura e tipo di retino utilizzati
 - variazioni della macchina da stampa
 - set di inchiostri utilizzati
 - tipo di supporto utilizzato

Definizione della Calibrazione mirata con linearizzazione lastra

1.7 L'obbiettivo di questo tipo di calibrazione è ottenere due curve <u>da usare sempre in</u> <u>contemporanea</u> per ogni condizione di stampa. La prima chiamata "Curva Lastra" servirà per compensare le variazioni legate al tipo di lastra:

- tipo di lastra utilizzata
- variazioni dovute al laser (CTP)
- variazioni dovute al chimico (sviluppo)

La seconda chiamata "Curva Stampa" servirà per compensare le variazione dei parametri relativi alla messa in macchina:

- lineatura e tipo di retino utilizzati
- variazioni della macchina da stampa
- set di inchiostri utilizzati
- tipo di supporto utilizzato

Il vantaggio insito in questo tipo di calibrazione consiste nel fatto che utilizzando due curve, si riesce a svincolare le variazioni dovute alla lastra dalle variazioni dovute alla macchina da stampa, riducendo complessivamente il numero di curve necessarie a soddisfare tutte le condizioni di stampa.

Definizione della Calibrazione generica

1.8 L'obbiettivo di questo tipo di calibrazione è ottenere una singola curva di calibrazione scelta arbitrariamente, senza tenere in considerazione il tipo di lastra, di macchina da stampa od altri parametri. È una curva di semplice implementazione in quanto non richiede avviamenti macchina.

Questo metodo non basandosi su misure del foglio stampato, ma solo su valori empirici, è il metodo più approssimativo.

2. Linearizzazione lastra

La linearizzazione lastra, **non è necessaria per lastre senza sviluppo**. Se state lavorando con lastre senza sviluppo passate al Capitolo 3 ed applicate la "**Calibrazione mirata senza linearizzazione lastra**".

La linearizzazione lastra **è vivamente consigliata per lastre con sviluppo**. Se state lavorando con lastre con sviluppo continuate nella lettura di questo capitolo.

Perché effettuare la linearizzazione lastra?

2.1 Dalla versione 4 di Prinergy/Prinergy Evo, è possibile l'utilizzo contemporaneo, in fase di lastrazione, di due curve *Calibration*. Utilizzando due curve distinte potremo svincolare le curve usate per la compensazione dello schiacciamento della macchina da stampa, da guelle relative al tipo di lastra usato, semplificando così la gestione globale delle curve.

L'operatore potrà usare le medesime curve di compensazione di schiacciamento della macchina da stampa, anche con lastre diverse, semplicemente cambiando la curva di linearizzazione lastra al cambiare della lastra caricata nel CTP. Questo approccio riduce complessivamente il numero di curve necessarie a soddisfare tutte le condizioni di stampa.

2.2 Queste curve per poter essere utilizzate correttamente dovranno <u>sempre</u> essere usate in concomitanza di curve di **"Calibrazione mirata con linearizzazione lastra**".

La curva *Calibration* di linearizzazione lastra si otterrà collegando in Harmony una curva *Current* (condizione attuale della lastra) ad una curva *Target* (valori desiderati in lasta).

Definiamo come lavora la combinazione lastra-CTP-sviluppo

2.3 In questa fase dobbiamo effettuare un'uscita lastra senza applicare alcuna correzione, per stabilire come lavora la combinazione di lastra-CTP-sviluppo. I valori ottenuti misurando una lastra non linearizzata servono per la creazione della curva di linearizzazione lastra.

Basterà incidere in lastra la scaletta di riferimento Kodak KPCS, svilupparla come da standard di fabbrica e leggere la scaletta con un **densitometro per lastra**.

Per essere certi che la lastra sia stata incisa senza alcuna curva di compensazione (curva %%NONE%%), misurate le due scale di riferimento con il densitometro e verificate che siano uguali. Se le due scale non sono uguali, significa che è stata involontariamente applicata una curva di linearizzazione. Ripetere il processo rimuovendo ogni curva di linearizzazione e/o calibrazione.

2.4 **Curva Current**: rappresenta i valori letti con un densitometro per lastre sulla lastra incisa e sviluppata <u>senza alcuna compensazione applicata</u> (usare la curva %%NONE%% nel flusso di lavoro).

Per la creazione della curva *Current* usare il menù: *File->New Curve->Current* inserire il nome che vogliamo assegnare alla curva, il tipo di supporto letto etc.

New Current Curve	Properties		×
Calibration	Comments	Data Entry	
Identification	Medium	Screening	_
First Name:	Kodak_Electra_Excel		
Date/Time Modified:			
Type:	Plate	•	
Curve Set:	One Curve	•	
Measured Color:	Black	•	
	OK Cano	el Help	

Queste curve saranno sempre del tipo "One Curve" in quanto il CTP incide con la medesima potenza di laser (Watt) tutti canali (CMYK e Spot); quindi non ha senso differenziare la linearizzazione lastra per ogni colore.

2.5 Inserire il tipo di lastra utilizzato.

New Current Curve P	roperties		×
Calibration Identification	Comments Medium	Data Entry Screening	
Medium:	Electra Excel		
	OK Cano	el Help	

2.6 Inserire le informazioni di retino usato.

New Current Curve	Properties	X
Calibration	Comments	Data Entry
Identification	Medium	Screening
Screening System:	Kodak	•
Resolution:	2400	•
Dot Shape:	Euclidean	_
Ruling:	150	•
	OK Canc	el Help

2.7 Lasciare i campi *Calibration*, *Comments* e *Data Entry* con i valori di default.

2.8 Confermando con *OK*, apparirà la seguente finestra.

2.9 Inserire nella colonna *CURVE*, le percentuali di retino lette sulla lastra con un **densitometro per lastre**. Maggiori saranno i valori misurati, più accurata sarà la curva.

(**ATTENZIONE!** Densitometri per carta e per lastra usano tecnologie di lettura diverse. In questa fase si raccomanda l'uso di densitometri a scansione per lastre offset)

Esempio: il gradino 50% corrisponde ad una lettura densitometrica del 45%

Salvarla la curva dal menù: File->Save curve

Definiamo i valori che vogliamo ottenere in lastra

- 2.10 **Curva Target**: rappresenta il valore desiderato in lastra. Lo scopo di queste curva e' linearizzare i valori in lastra, creeremo una curva chiamata "*Lineare*" che utilizzeremo per tutte le *curve di linearizzazione lastra*.
- 2.11 Per la creazione della curva *Target* lineare usare il menu': *File->New Curve->Target* inserire il nome della curva *Lineare*, il tipo di supporto letto etc.

New Target Curve P	Properties	×
Identification Com	ments Data Entry	
Name: Date/Time	Lineare	
Modified:		
i ype:	Plate	
Curve Set:	One Curve	
Measured Color:	Black	
	OK Cancel Help	

2.12 Premendo ok apparirà la seguente curva lineare.

Salvarla senza apportare modifiche dal menù: File->Save curve

Creazione della curva di linearizzazione lastra da usare con questa combinazione di lastra-CTP-sviluppo

2.13 *Curva Calibration*: rappresenta la curva di linearizzazione lastra per ottenere valori lineari in una determinata combinazione di CTP/lastra/chimico.

Per la creazione della curva *Calibration* usare il menù: *File->New Curve->Calibration->Derived*

Utilizzare i pulsanti [...] per selezionare le curve *Current* e *Target* create ai punti 2.4 e 2.10 .

Ne	w Calibration Curv	/e	×
	- Current Curve :		1
	Name:	Kodak_Electra_Ex	
	Туре:	Plate	
	Curve Set:	One Curve	
	Measured Color:	Black	
	– Target Curve: —]
	Name:	Lineare	
	Туре:	Plate	
	Curve Set:	One Curve	
	Measured Color:	Black	
		<u>O</u> K <u>C</u> ancel	

2.14 Confermando con *OK*, otterrò la curva *Calibration* da utilizzare per la linearizzazione della lastra, ovviamente questa curva dovrà essere usata <u>sempre in affiancamento</u> ad una curva di compensazione dello schiacciamento della macchina da stampa. Salvare la curva con *File->Save All Curves*

2.15 Per personalizzare il nome della curva di calibrazione appena creata, usare il menù *Edit->Curve Properties*, inserire il nome desiderato e salvare nuovamente la curva.

3. Calibrazione mirata

3.1 Il calcolo della curva di svuotamento viene derivato dal reale schiacciamento di messa in macchina, comparato ad uno schiacciamento definito come standard (ISO o TAGA), si utilizzeranno i valori di schiacciamento misurati sulla carta.

La curva *Calibration* di calibrazione mirata si otterrà collegando in Harmony una curva *Current* (condizione si schiacciamento attuale) ad una curva *Target* (valori desiderati in stampa).

Definiamo l'attuale schiacciamento in una condizione di stampa

- 3.2 **Curva Current**: rappresenta lo schiacciamento misurato sullo stampato. Per la creazione di questa curva faremo un avviamento macchina contenente una forma test con scalette dall' 1% al 100% per ogni colore (C M Y K). Le lastre generate per questo avviamento macchina dovranno essere:
 - lastre senza alcuna compensazione (curva %%NONE%%); nel caso si sia scelto di utilizzare il metodo "Calibrazione mirata senza linearizzazione lastra".
 - lastre con la curva di linearizzazione applicata; nel caso si sia scelto di utilizzare il metodo "Calibrazione mirata con linearizzazione lastra". In questo caso prima di procedere fate riferimento al Capitolo 2.

I valori di schiacciamento, misurati con un **densitometro per carta**, o **spettrofotometro**, verranno usati per la creazione di questa curva.

Procedere alla messa in macchina dalla forma test ed effettuare la tiratura campione.

Esempio di forma test.

Parametri da utilizzare durante la tiratura di prova

3.3 Durante la tiratura, è importante che il macchinista ottenga i valori dei pieni in relazione al supporto, come da norma ISO12647-2:2013.

		Colorant description											
Characteristic		CD1 Premium coated		CD2 Improved coated			CD3 Standard coated glossy			CD4 Standard coated matte			
		Co	ordinat	es	Coordinates			Co	ordinat	es	Co	ordinat	es
Colou	r	L*	a*	b*	L*	a*	b*	L*	L* a*		L*	a*	b*
Plant	WB	18	- 10		288	18	3	-34	1	- B-	200	8	а
Black	BB	18.	-10		26	18	3	19	1	1	281	1	а
6	WB	88	-36	-84	108	-87	- 198	111	-36	-43	58	-88	-62
Cyan	BB	.88	-81	-11	16	-58	-60	113	-31	-43	38	-82	-40
	WB	48	75	-4	-	73	-4.	44	10	-4	48	4.05	-4
Magenta	BB	47	79	-8	47	73	-e	48	-88	-	46	80	-12
Valler	WB	-	+	83	82	-8	180	184	-11	-	85	-11	83
Yellow	BB	87	+	10	84	-0	187	181	-11	86	42	-11	180
	WB	48	48	47	- 100	66	49	-41	44	45	40	40	41
Ked	BB	46	-67	45	41	64	48	46	40	40	46	60	38
	WB	50	-65	156	50	-88	122	49	-56	19	50	-68	104
Green	BB	48	-68	25	101	-88	34	48	-54	21	40	-84	- 84
Dive	WB	25	20	-86	100	(84	-66	11	15	-63	20	554	-88
Blue	BB	28	20	-45	20	105	-45	34	14	-11	207	15	-58
Overprint	WB	28	- 10	-4	28	-8	4	31	-8	- 10	201	. 8	.41
CMY100	BB	18	-10	11	33	- 6	4	26	-0	10	26		121

FOGRA51

Characteristic			Colorant Description											
		CD5 Wood-free uncoated		Supe	CD6 Super calendered			CD7 Improved uncoated			CD8 Standard uncoated			
Calan	21	Coordinates		C	Coordinates			Coordinates			Coordinates			
Colour		L*	a*	b*	L*	a*	b*	L*	a*	b*	L*	a*	b*	
Diask	WB	33	1	1	13	1	1	11	1	. 9	38	1	12	
Black	BB	18.2	1	1	11	1	1	11	1	8	28	. 1	1	
C	WB	100	-25	-104	194-	-36	-48	10	-31	-81	54	-86-	-14	
Cyan	BB	50	-28	-69	54	-185	188	-82	-39	-84	50	-26	-34	
	WB	58	100	4	48	67	18	58	88	-11	53	- 55	18	
Magenta	BB	123	108	- 6		48.	- 18	-84	58	-12	58	100	14	
¥.11	WB	89	-8	76	184	- 10	186	188	- 18	75	298		78	
Tellow	BB	100	-8	7.2	181	- 6	183	80	-12	79	76		67	
P. d	WB	20.8	36	17	47	168	40	11	17	18.	48	10	31	
Ked	BB	50	33	33	44	+1	38	49	54	29	- 10	50	29	
6	WB	208	-40	14	49	-53	15	18	-43	18	107	-88	38	
Green	BB	58	-48	13	44	-50	34	14	-44	12	-	-81	10	
	WB	100			88	11	-41	10		-81	105		-45	
Blue	BB	1874		-100	11	11	-88	55.	P.	-80	(84	. 11	-25	
Overprint	WB	15	- 10	-8	31	- 4	- 18	- 88	- 18	.4	100	- 4		
CMY100	BB	314		-8	36	4	-18	38	-18	-8	385	4		

FOGRA52

N.B. eventuali difetti di stampa quali: **battute, slur, sbaveggio o fuori registro** compromettono i valori letti nella tiratura di prova.

E se non ho uno spettrofotometro cosa posso fare?

Se lo stampatore non dispone di uno spettrofotometro sul banco macchina, è ancora possibile tenere sotto controllo la qualità della produzione utilizzando un densitometro.

I valori di densità da usare in produzione possono essere derivati dalla copia OK misurandoli con uno spettrofotometro e riportandoli in una tabella di riferimento simile a questa:

		Den	sità di rifer	Dot Gain di riferimento +/- 3%			
Tipo di carta	Set di inchiostri	с	М	Y	к	СМҮК	Rif. ISO
Marca e modello del supporto	Marca e modello degli inchiostri	1,38	1,51	1,42	1,87	16%	PC1

Esempio di tabella delle densità: i valori utilizzati nella tabella sono del tutto dimostrativi.

3.4 Per la creazione della curva *Current* usare il menù: *File->New Curve->Current* inserire il nome che vogliamo assegnare alla curva ed il tipo di supporto letto.

New Current Curve	Properties		×	New Current Curv	ve Properties		×
Calibration	Comments	Data Entry		Calibration	Comments	Data Entry	
Identification	Medium	Screening	_1	Identification	Medium	Screening	
First Name:	Carta patinata lucida 1	150lpi		First Name	Carta patinata lucida	150lpi	
Date/Time Modified:				Date/Time Modified:			
Туре:	Paper	•		Type:	Paper	•	
Curve Set:	CMYK Curves	•		Curve Set:	One Curve	•	
				Measured Color:	Black	•	
	OK Annu	la ?			OK Can	cel Help	

Per la creazione di curve specifiche per ogni colore (C M Y K), scegliere "CMYK Curves" nel campo **Curve Set**. Lasciando "One curve" verrà creata una singola curva univocamente applicata ad ogni colore di stampa.

3.5 Inserire il tipo di lastra utilizzato.

New Current Curv	e Properties	×
Calibration Identification	Comments Medium	Data Entry Screening
Medium:	Electra Excel	•
	OK Cano	el Help

3.6 Inserire le informazioni di retino usato.

New Current Curve	Properties	X
Calibration	Comments	Data Entry
Identification	Medium	Screening
Screening System:	Kodak	•
Resolution:	2400	•
Dot Shape:	Euclidean	_
Ruling:	150	•
	OK Canc	el Help

3.7 Lasciare i campi *Calibration*, *Comments* e *Data Entry* con i valori di default.

3.8 Confermando con *OK*, apparirà la seguente finestra.

wwCurrent 💦	
Current Curve	
	Display / Edit Curve Nodes Image: Curve Image: Curve Image: Curve Image: Curve Image: Curve Image: Curve <td< td=""></td<>

3.9 Inserire nella colonna *CURVE*, i valori di schiacciamento misurati con un **densitometro per carta** o **spettrofotometro** sulla forma test per il canale Black. (ATTENZIONE! In questa fase si consiglia l'uso di uno spettrofotometro)

Esempio: il gradino 20% corrisponde ad una lettura densitometrica del 39% (39-20 = 19% di schiacciamento)

- U × rent Curve Current Curve Display / Edit Curve Nodes - Display / Edil Curve Nodes PS EDA X 49 699 50 70.6 K 51 71.7 52 72.5 53 73.3 56 75.7 57 76.5 59 78.0 59 78.0 56 75.7 57 76.5 50 78.0 58 77.2 59 78.0 50 78.0 53 80.0 54 81.5 55 80.0 55 80. Curve Nodes Display / Edit ♥ C Black ♥ © Cyan □ C Magenta □ C Yellow C Black 🖌 🗶 🔺 68 69 70 71 72 73 74 75 76 77 75 76 77 78 80 81 82 83 83 84 🔽 🖲 Magenta 85.4 86.4 87.0 87.5 C Yellow Solid Density: Solid Density: 89. 90.6 91 91.6 92 <u>- 0 ×</u>

Per curve CMYK, inserire i valori anche per i canali Cyan Magenta e Yellow.

Salvare la curva con File->Save All Curves.

Definiamo i valori che vogliamo ottenere sul foglio stampato in questa condizione di stampa

3.10 *Curva Target*: rappresenta il valore di schiacciamento che vogliamo ottenere sullo stampato nelle condizioni di stampa scelte al punto 3.3. Sono degli **standard** definiti da enti internazionali quali ISO, TAGA etc.

Per maggiori informazioni sulle curve target fate riferimento al cap. 6.5.

Potete scaricare le curve Harmony preimpostate qui: http://www.maurolussignoli.it/documenti.htm

3.11 Potete creare anche manualmente queste curve da: *File->New Curve->Target* inserire il nome che vogliamo assegnare alla curva, il tipo di supporto letto etc.

New Target Curve F	Properties	×	New Target Curve Properties	×
Identification Com	ments Data Entry	_	Identification Comments Data Entry	
Name: Date/Time Modified:	FOGRA_39		Name: FOGRA_39 Date/Time Modified:	
Type:	Paper 💌		Type: Paper 💌	
Curve Set:	CMYK Curves		Curve Set: One Curve	
			Measured Color: Black	
	OK Annulla ?		OK Cancel Hel	>

Il tipo di curva Target specificato nel campo **Curve Set**, deve essere congruo a quello definito al punto 3.4 (*File->New Curve->Current*). *Curve Set* diversi non potranno essere successivamente mischiati fra loro al punto 3.13.

In breve: se avete creato una curva *Current* a 4 colori (CMYK Curves), anche la curva *Target* dovrà essere dello stesso tipo per non incorrere in messaggi d'errore.

3.12 Inserire i valori standard che si vogliono ottenere in stampa, per il canale Black. Ribadisco che i valori da inserire sono quelli definiti da enti terzi; ai fini della calibrazione, non avrebbe senso utilizzare in questa fase dei valori a nostra discrezione.

Per curve CMYK, inserire i valori anche per i canali Cyan Magenta e Yellow.

Salvare la curva con File->Save All Curves.

Creiamo la curva di calibrazione TVI per una condizione di stampa

- 3.13 *Curva Calibration*: rappresenta la curva di svuotamento necessaria per ottenere sullo stampato i valori di schiacciamento desiderati in una condizione di stampa.
- 3.14 Per la creazione della curva *Calibration* usare il menù: *File->New Curve->Calibration-Derived*

Usando i pulsanti [...] selezionare la curva *Current* e la curva *Target* create ai punti 3.4 e 3.10 .

New Calibration Curv	e 🔀
🕞 Current Curve :	
Name:	Carta Patinata Luci
Туре:	Paper
Curve Set:	One Curve
Measured Color:	Black
Target Curve:	
Name:	Creo_EURO_Stanc
Туре:	Paper
Curve Set:	CMYK Curves
	<u>O</u> K <u>C</u> ancel

3.15 Confermando con *OK*, si otterrà la curva di calibrazione necessaria ad ottenere il risultato di stampa voluto. Salvare la curva con *File->Save All Curves*

3.16 Per personalizzare il nome della curva di calibrazione appena creata, usare il menù *Edit->Curve Properties*, inserire il nome desiderato e salvare nuovamente la curva.

4. Calibrazione generica

- 4.1 Il calcolo della curva di svuotamento viene deciso in maniera del tutto arbitraria, dall'operatore, senza tenere in considerazione il reale schiacciamento di messa in macchina. Per la creazione di una curva di calibrazione generica, è necessaria la sola creazione di una curva *Calibration*.
- 4.2 **Curva Calibration**: rappresenta il valore di svuotamento che vorremo ottenere in lastra. Questa curva, non basandosi su misurazioni densitometriche, non terrà conto di nessun valore di schiacciamento reale in macchina, né di eventuali oscillazioni del retino dovute al chimico (sviluppo).
- 4.3 Per la creazione della curva usare il menù: *File->New Curve->Calibration->Transfer* Non attivare alcun tipo di curva.

New Transfer Curve	X
Derived Origin -	
Current Curve : -	
Name:	Carta Patinata Luci
Туре:	Paper
Curve Set:	One Curve
Measured Color:	Black
Target Curve: —	
Name:	Creo_EURO_Stanc
Type:	Paper
Curve Set:	CMYK Curves
	<u>O</u> K <u>C</u> ancel

4.4 Attivare i nodi della curva che vogliamo modificare ed inseriamo un valore negativo o positivo in base al tipo di variazione desiderata, poi salvare la curva con *File->Save All Curves*.

- **Esempio:** il gradino del 50% sarà svuotato in lastra del 10% (50-10 = 40%) Questo valore non tiene in considerazione eventuali variazioni di retino causate dal chimico (sviluppo).
- 4.5 Per personalizzare il nome della curva di calibrazione appena creata, usare il menù *Edit->Curve Properties*, inserire il nome desiderato e salvare nuovamente la curva.

5. Uso della curva

5.1 Nei *Process Template* del flusso di lavoro saranno visibili le curve *Calibration* create in Harmony. Il flusso di lavoro non distingue le "curve di calibrazione lastra" dalle "curve di compensazione dello schiacciamento macchina", sarà quindi compito dell'operatore selezionare le giuste curve da utilizzare nei campi "Plate curve" e "Print Curve".

🗢 👸 🔽 Calibra	tion & Screening	?								
Calibration										
Plate Curve	%% NONE %%									
Print Curve (Calibration)	Print Curve (Calibration) HL_NORMALE, ROTATIVA Round 150 lpi 2400 CREOSET									
Harmony Medium	ROTATIVA									
Minimum Dot Size 0.0	%									
		Use Document Screen								
		🗖 Angles								
Screening Mode 💿 Over	ide all Screening 🔿 Keep DotShop Settings 🔿 Use Document's Screening, if Present	Frequencies								
		🗖 Dot Shapes								
Screen System Creos	ettes CMYK 105-75-0-45									
Dot Shape Round										
Device Resolutions	Screen Angles									
Screen Ruling Feature Siz	E 150.0 Van (Cyan) Magenta (Magenta)									
Screen Color	Add/Modify Yellow (Yellow)									
at Angle (Black)	Telete Black (Black)									

Nel caso in cui vogliate lavorare con una sola curva (metodo "**Calibrazione mirata** senza linearizzazione lastra" o "**Calibrazione generica**"); lasciare la dicitura "%% NONE %%" nel campo "Plate Curve", e selezionare la curva desiderata nel campo "Print Curve (Calibration)". Questa curva compenserà le variazioni di tutti i parametri di stampa:

- tipo di lastra utilizzata
- variazioni dovute al laser (CTP)
- variazioni dovute al chimico (sviluppo; questa variabile non è presente per lastre senza sviluppo)
- lineatura e tipo di retino utilizzati
- variazioni della macchina da stampa
- set di inchiostri utilizzati
- tipo di supporto utilizzato
- 5.2 Nel caso in cui vogliate lavorare con due curve di calibrazione (metodo "**Calibrazione mirata con linearizzazione lastra**"), selezionare la curva di linearizzazione lastra nel campo "Plate Curve", questa curva compenserà le variazioni relative a:
 - tipo di lastra utilizzata
 - variazioni dovute al laser (CTP)
 - variazioni dovute al chimico (sviluppo)

Selezionare la curva di compensazione schiacciamento nel campo "Print Curve (Calibration)", questa curva compenserà le variazioni relative a:

- lineatura e tipo di retino utilizzati
- variazioni della macchina da stampa
- set di inchiostri utilizzati
- tipo di supporto utilizzato

6. Q&A

6.1 "Perché serve creare le curve di compensazione tonale?"

Nella stampa offset il punto di retino si allarga per effetto della pressione che avviene tra il cilindro caucciù e il cilindro stampa al passaggio del supporto.

La pressione è un elemento fondamentale per garantire il trasferimento dell'inchiostro dal grafismo della forma (lastra) al supporto. Ovviamente il grafismo a causa della pressione di stampa si allargherà maggiormente più elevata sarà la pressione.

L'allargamento del punto per effetto della pressione è tecnicamente definito come Dot Gain: ossia guadagno di punto in stampa. Il Dot Gain corrisponde a ciò che gli stampatori chiamano "schiacciamento".

In realtà gli strumenti di misura convenzionali (densitometri) misurano anche l'effetto ottico della diffusione della luce all'interno del supporto: ossia il Dot Gain Ottico (Optical Dot Gain).

Tutti i processi di stampa necessitano una pressione meccanica per permettere il trasferimento dell'inchiostro dalla forma al supporto da stampa. Pertanto tutti i procedimenti di stampa sono condizionati dal problema della variazione dimensionale del punto di retino per effetto della pressione di stampa.

Il punto di retino definito in un file digitale, subirà quindi delle variazioni nei vari passaggi di lavorazione, fino al raggiungimento del supporto stampato.

6.2 "Quanto schiaccia la mia macchina da stampa?"

Lo schiacciamento di messa in macchina è un aspetto intrinseco al processo stesso di stampa, quindi non eliminabile.

Gli standard ISO definiscono quanto deve essere questo aumento del punto in relazione al tipo di macchina da stampa, al tipo di supporto ed al tipo di lineatura utilizzati. Una giusta compensazione dello schiacciamento non ha come obbiettivo l'eliminazione dello schiacciamento, ma il suo controllo per riportalo ai valori standard definiti da ISO.

Il concetto base da tenere sempre a mente è il seguente:

Misurando il gradino del **50%** su uno stampato questo non sarà mai uguale a 50, ma 50 + il valore di schiacciamento di messa in macchina.

Facciamo un esempio pratico: pensando ad una macchina piana che stampi su carta patinata lucida a 60lpcm, la norma ISO ci dice che dovremo avere uno schiacciamento intorno al 16%, avremo quindi: 50 + 16 = 66%

66% è il valore corretto che dovremmo leggere sul foglio stampato

6.3 *"Lo schiacciamento di messa in macchina varia al variare della lineatura?"*

Nel grafico sottostante potete vedere come la lineatura influisca sullo schiacciamento di messa in macchina al variare della frequenza di retino.

Esempio di curve di Press Gain a diverse frequenze di retino a partire da una forma di stampa offset (lastra CTP) con valori lineari (1:1). Le lineature sono di 60-70-80 Linee/cm e stocastico 21 micron.

Si noterà come il Press Gain aumenta all'aumentare della lineatura.

6.4 "Su che tipo di carta sto stampando?"

Gli standard ISO 12647-2:2013 definiscono i seguenti 8 tipi di carta.

		Print Sub	ostrates (PS)	
	PS1	PS2	PS3	PS4
Type of surface	Premium coated	Improved coated	Standard coated glossy	Standard coated matte
Typical process	Sheet fed offset, Heat set web offset	Heat set web offset	Heat set web offset	Heat set web offset
Typical papers	Wood-free coated (WFC), High weight coated (HWC), Medium weight coated (MWC), glossy/semi-matte/matte	Medium weight coated (MWC) Light weight coated (LWC Improved)	Light weight coated (LWC), glossy/semi-matte	Machine finished coated (MFC), Light weight coated (LWC), semi-matte
	PS5	PS6	PS7	PS8
Type of surface	Wood-free uncoated	Super calendered	Improved uncoated	Standard uncoated
Typical process	Sheet fed offset, Heat set web offset	Heat set web offset	Heat set web offset	Heat set web offset
Typical papers	Wood-free uncoated (WFU)	Super calendered (SC-A, SC-B)	Uncoated mechanical improved (UMI), Improved newsprint (INP)	Standard newsprint (SNP)

Per verificare il tipo di carta in uso, posso misurarla con uno spettrofotometro e confrontarla con i seguenti valori.

Channeteriatio	Paper type and surface											
Characteristic	PS1			PS2			PS3			PS4		
Type of surface	Premium coated 80 to 250 (115)		Improved coated 51 to 80 (70)			Standard glossy coated 48 to 70 (51)			Standard matte coated 51 to 65 (54)			
Mass-per-area a g/m ²												
CIE Whiteness b	105 to 135		90 to105		60 to 90		75 to 90					
Gloss c	10 to 80		25 to 65		60 to 80		7 to 35					
c.l.	Coordinates		Coordinates		Coordinates			Coordinates				
Colour a	L*	a*	b*	L*	a*	b*	L*	a*	b*	L*	a*	b*
White backing	16	1	14	50	-	14	1981		1	193	- 8	1
Black backing	-96	1	-8	10		- 18	62	. 8	101		8	- 18
Tolerance	18	- 63	rei .	10	- 62	- 63	60	12	161	- 63	12	- 63
Fluorescence e	moderate		low		low			low				

FOGRA51

FOGRA52

Chanastaniatia	Paper type and surface											
Characteristic	PS5 Wood-free uncoated			PS6 Super calendered uncoated			PS7 Improved uncoated 40 to 56 (49) 40 to 80			PS8 Standard uncoated 40 to 52 (45) 35 to 60		
Type of surface												
Mass-per-area a g/m ²	70 to 250 (120) 140 to 175		38 to 60 (56) 45 to 85									
CIE Whiteness b												
Gloss c		5 to 15		30 to 55		10 to 35		5 to 10				
6-1d	Coordinates		Coordinates		Coordinates			Coordinates				
Colour	L*	a*	b*	L*	a*	b*	L*	a*	b*	L*	a*	b*
White backing	95	1	- 14	788		1	101		1	ies.	1.16	5
Black backing	10 1 -1		62	- 8	- 1	ini.	14	1	163	10	11	
Tolerance	60	12	161	63	- 62	-61	68	10	- 61	101	nd	100
Fluorescence e	high		high low		faint			faint				

6.5 "Quale condizione di stampa corrisponde a quale curva di stampa?"

La combinazione di: Tipo di carta (PS), Set di inchiostri (CD) e frequenza di stampa (Screening Description), determinano le 8 Condizioni di stampa (PC) definite nella norma ISO12647-2:2013.

			Screening Description							
Printing Condi- tion (PC)		Colorant Description (CD)		Periodic	No	on-periodic				
	Print Substrate (PS)		TVI Curve	Frequency in cm ⁻¹	TVI Curve	Spot size in µm				
PC1	PS1	CD1	А	60-80	E	20(25)				
PC2	PS2	CD2	В	48-70	E	25				
PC3	PS3	CD3	В	48-60	E	30				
PC4	PS4	CD4	В	48-60	E	30				
PC5	PS5	CD5	С	52-70	E	30(35)				
PC6	PS6	CD6	В	48-60	E	35				
PC7	PS7	CD7	с	48-60	E	35				
PC8	PS8	CD8	С	48-60	E	35				

Stabilita una specifica combinazione di: Tipo di carta, Set di inchiostri e frequenza di stampa, occorre calibrare le curve TVI per fare in modo che la curva di stampa ottenuta rispecchi le condizioni stabilite dalla norma.

Rights

© COPYRIGHT Tutti i diritti dei marchi e loghi registrati citati in queste pagine sono dei legittimi proprietari.

Questo opera è concessa in licenza: <u>Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 Unported</u>.